top of page

Research publications

Find below selected recent publications of our team demonstrating the application of AI in an variety of domains including industrial sectors, healthcare, energy and security

2022

  • Ntakolia, C., Moustakidis, S., & Siouras, A. (2023). Autonomous path planning with obstacle avoidance for Smart Assistive Systems. Expert Systems with Applications, 213, 119049. doi:10.1016/j.eswa.2022.119049

  • Kokkotis, C., Chalatsis, G., Moustakidis, S., Siouras, A., Mitrousias, V., Tsaopoulos, D., ... & Tsatalas, T. (2022). Identifying Gait-Related Functional Outcomes in Post-Knee Surgery Patients Using Machine Learning: A Systematic Review. International Journal of Environmental Research and Public Health, 20(1), 448.

  • Kokkotis, C., Moustakidis, S., Giarmatzis, G., Giannakou, E., Makri, E., Sakellari, P., ... & Aggelousis, N. (2022). Machine Learning Techniques for the Prediction of Functional Outcomes in the Rehabilitation of Post-Stroke Patients: A Scoping Review. BioMed, 3(1), 1-20.

  • Chadoulos, C. G., Tsaopoulos, D. E., Moustakidis, S., Tsakiridis, N. L., & Theocharis, J. B. (2022). A novel multi-atlas segmentation approach under the semi-supervised learning framework: Application to knee cartilage segmentation. Computer Methods and Programs in Biomedicine, 227, 107208.

  • Kopsidas, I., Karagiannidou, S., Kostaki, E. G., Kousi, D., Douka, E., Sfikakis, P. P., ... & Paraskevis, D. (2022). Global Distribution, Dispersal Patterns, and Trend of Several Omicron Subvariants of SARS-CoV-2 across the Globe. Tropical Medicine and Infectious Disease, 7(11), 373.

  • Siouras, A., Stergiou, K., Karlsson, P., & Moustakidis, S. (2022). Hybrid object detection methodology combining altitude-dependent local deep learning models for search and rescue operations. Journal of Control and Decision, 1-11. doi:10.1080/23307706.2022.2141358

  • Kampaktsis, P. N., Siouras, A., Doulamis, I. P., Moustakidis, S., Emfiezoglou, M., Van den Eynde, J., ... & Briasoulis, A. (2022). Machine learning‐based prediction of mortality after heart transplantation in adults with congenital heart disease: A UNOS database analysis. Clinical Transplantation, e14845.

  • Chadoulos, C. G., Tsaopoulos, D. E., Moustakidis, S., Tsakiridis, N. L., & Theocharis, J. B. (2022). A novel multi-atlas segmentation approach under the semi-supervised learning framework: Application to knee cartilage segmentation. Computer Methods and Programs in Biomedicine, 107208.

  • Kokkotis, C., Giarmatzis, G., Giannakou, E., Moustakidis, S., Tsatalas, T., Tsiptsios, D., ... & Aggelousis, N. (2022). An Explainable Machine Learning Pipeline for Stroke Prediction on Imbalanced Data. Diagnostics, 12(10), 2392.

  • Papandrianos, N. I., Feleki, A., Moustakidis, S., Papageorgiou, E. I., Apostolopoulos, I. D., & Apostolopoulos, D. J. (2022). An Explainable Classification Method of SPECT Myocardial Perfusion Images in Nuclear Cardiology Using Deep Learning and Grad-CAM. Applied Sciences, 12(15), 7592.

  • Kokkotis, C., Moustakidis, S., Tsatalas, T., Ntakolia, C., Chalatsis, G., Konstadakos, S., ... & Tsaopoulos, D. (2022). Leveraging explainable machine learning to identify gait biomechanical parameters associated with anterior cruciate ligament injury. Scientific Reports, 12(1), 1-12.

  • Kampaltsis, P., Emfiezoglou, M., Siouras, A., Eynde, J., Moustakidis, S., Doulamis, I. P., ... & Briasoulis, A. (2022). Prediction of 1-Year Mortality After Heart Transplantation in Adults with Congenital Heart Disease with Machine Learning Models. The Journal of Heart and Lung Transplantation, 41(4), S436.

  • Anagnostis, A., Moustakidis, S., Papageorgiou, E., & Bochtis, D. (2022). A Hybrid Bimodal LSTM Architecture for Cascading Thermal Energy Storage Modelling. Energies, 15(6), 1959.

  • Moustakidis, S., Kokkotis, C., Tsaopoulos, D., Sfikakis, P., Tsiodras, S., Sypsa, V., ... & Paraskevis, D. (2022). Identifying Country-Level Risk Factors for the Spread of COVID-19 in Europe Using Machine Learning. Viruses, 14(3), 625.

  • Siouras, A.; Moustakidis, S.; Giannakidis, A.; Chalatsis, G.; Liampas, I.; Vlychou, M.; Hantes, M.; Tasoulis, S.; Tsaopoulos, D. Knee Injury Detection Using Deep Learning on MRI Studies: A Systematic Review. Diagnostics 2022, 12, 537. https://doi.org/10.3390/diagnostics12020537

  • Moustakidis, S.; Siouras, A.; Vassis, K.; Misiris, I.; Papageorgiou, E.; Tsaopoulos, D. Prediction of Injuries in CrossFit Training: A Machine Learning Perspective. Algorithms 2022, 15, 77. https:// doi.org/10.3390/a15030077

  • Kokkotis, C., Ntakolia, C., Moustakidis, S. et al. Explainable machine learning for knee osteoarthritis diagnosis based on a novel fuzzy feature selection methodology. Phys Eng Sci Med (2022). https://doi.org/10.1007/s13246-022-01106-6

2021

  • S. Moustakidis, P. Kampaktsis, A. Tzani, I. Doulamis, A. Tzoumas, A. Drosou, G. Filippatos, A. Briasoulis, Machine Learning Based Prediction of 1-year Survival after Isolated Heart Transplant, The Journal of Heart and Lung Transplantation, 40, 4, Supplement, 2021,https://doi.org/10.1016/j.healun.2021.01.1849.

  • Ntakolia, C.; Kokkotis, C.; Moustakidis, S.; Tsaopoulos, D. Prediction of Joint Space Narrowing Progression in Knee Osteoarthritis Patients. Diagnostics 2021, 11, 285. https://doi.org/10.3390/diagnostics11020285

  • Kokkotis, C.; Moustakidis, S.; Baltzopoulos, V.; Giakas, G.; Tsaopoulos, D. Identifying Robust Risk Factors for Knee Osteoarthritis Progression: An Evolutionary Machine Learning Approach. Healthcare 2021, 9, 260. https://doi.org/10.3390/healthcare9030260

  • Ntakolia, C., Anagnostis, A., Moustakidis, S. et al. Machine learning applied on the district heating and cooling sector: a review. Energy Systems 2021. https://doi.org/10.1007/s12667-020-00405-9

  • Ntakolia, C., Kokkotis, C., Moustakidis, S., & Tsaopoulos, D. (2021). Identification of most important features based on a fuzzy ensemble technique: Evaluation on joint space narrowing progression in knee osteoarthritis patients. International journal of medical informatics, 156, 104614.

  • Dikopoulou, Z., Moustakidis, S., & Karlsson, P. (2021). GLIME: A new graphical methodology for interpretable model-agnostic explanations. arXiv preprint arXiv:2107.09927.

  • Kampaktsis, P. N., Tzani, A., Doulamis, I. P., Moustakidis, S., Drosou, A., Diakos, N., ... & Briasoulis, A. (2021). State‐of‐the‐art machine learning algorithms for the prediction of outcomes after contemporary heart transplantation: Results from the UNOS database. Clinical Transplantation, 35(8), e14388.

  • Ntakolia, C., Kokkotis, C., Karlsson, P., & Moustakidis, S. (2021). An Explainable Machine Learning Model for Material Backorder Prediction in Inventory Management. Sensors, 21(23), 7926.

  • Doulamis, I. P., Tzani, A., Moustakidis, S., Kampaktsis, P. N., & Briasoulis, A. (2021). Effect of Hepatitis C donor status on heart transplantation outcomes in the United States. Clinical Transplantation, 35(4), e14220.

2020

  • Moustakidis, S., Papandrianos, N.I., Christodolou, E. et al. Dense neural networks in knee osteoarthritis classification: a study on accuracy and fairness. Neural Computing & Applications (2020). https://doi.org/10.1007/s00521-020-05459-5

  • K. Liakos, G. Georgakilas, S. Moustakidis, N. Sklavos & F. Plessas, Conventional and machine learning approaches as countermeasures against hardware trojan attacks. Microprocessors And Microsystems 2020, 79, 103295. doi: 10.1016/j.micpro.2020.103295

  • C. Kokkotis, S. Moustakidis, E. Papageorgiou, G. Giakas, & D. Tsaopoulos, Machine learning in knee osteoarthritis: A review. Osteoarthritis And Cartilage Open 2020, 2(3), 100069. doi: 10.1016/j.ocarto.2020.100069

  • C. Kokkotis, S. Moustakidis, G. Giakas, D. Tsaopoulos, Identification of Risk Factors and Machine Learning-Based Prediction Models for Knee Osteoarthritis Patients. Applied Sciences 2020, 10(19), 6797https://doi.org/10.3390/app10196797.

  • S. Moustakidis, P. Karlsson, A novel feature extraction methodology using Siamese convolutional neural networks for intrusion detection. Cybersecurity 3(16), 2020. https://doi.org/10.1186/s42400-020-00056-4

  • Ntakolia, C., Diamantis, D. E., Papandrianos, N., Moustakidis, S., & Papageorgiou, E. I. (2020, December). A lightweight convolutional neural network architecture applied for bone metastasis classification in nuclear medicine: A case study on prostate cancer patients. In Healthcare (Vol. 8, No. 4, p. 493). Multidisciplinary Digital Publishing Institute.

2019

  • S. Moustakidis, E. Christodoulou, E. Papageorgiou, C. Kokkotis, N. Papandrianos and D. Tsaopoulos, Application of machine intelligence for osteoarthritis classification: a classical implementation and a quantum perspective, Quantum Machine Intelligence, 2019. Available: 10.1007/s42484-019-00008-3 

  • S. Moustakidis, M. Omar, J. Aguirre, P. Mohajerani, and V. Ntziachristos, V., Fully automated identification of skin morphology in raster‐scan optoacoustic mesoscopy using artificial intelligence. Medical Physics, 46(9), 4046-4056, 2019. doi: 10.1002/mp.13725 

  • S. Moustakidis, I. Meintanis, G. Halikias, and N. Karcanias, An Innovative Control Framework for District Heating Systems: Conceptualisation and Preliminary Results, Resources, vol. 8, no. 1, p. 27, 2019. Available: 10.3390/resources8010027 

till 2018

  • S. Moustakidis et al., Excitation-invariant pre-processing of thermographic data, Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability, vol. 232, no. 4, pp. 435-446, 2018. Available: 10.1177/1748006x18770888

  • S. Moustakidis et al., Non-destructive inspection of aircraft composite materials using triple IR imaging. IFAC-PapersOnLine 2016, 49, 291-296.

  • S. Moustakidis et al., An Intelligent Methodology for Railways Monitoring Using Ultrasonic Guided Waves, Journal of Nondestructive Evaluation, vol. 33, no. 4, pp. 694–710, Oct. 2014. 

  • S. Moustakidis, G. Mallinis, N. Koutsias, J. B. Theocharis and V. Petridis, SVM-based fuzzy decision trees for classification of high spatial resolution remote sensing images, IEEE Transactions on Geoscience and Remote Sensing, 50 (1) , art. no. 5976442 , pp. 149-169, 2012. 

  • S. Moustakidis, J. B. Theocharis, and G. Giakas, A fuzzy decision tree-based SVM classifier for assessing osteoarthritis severity using ground reaction force measurements, Medical Engineering and Physics 32(10): 1145-1160, 2010. 

  • S. Moustakidis and J. B. Theocharis, SVM-FuzCoC: A novel SVM-based feature selection method using a fuzzy complementary criterion, Pattern Recognition, vol. 43, pp. 3712-3729, 2010

  • S. Moustakidis, J. B. Theocharis, and G. Giakas, Subject Recognition Based on Ground Reaction Force Measurements of Gait Signals, IEEE Transactions on Systems, Man, and Cybernetics—Part B, vol.38, no.6, pp.1476-1485, Dec. 2008

Interested?

Contact us to learn more about our research activities

bottom of page